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ABSTRACT
Given the explosive growth of the Web and the popularity
of image sharing Web sites, image retrieval plays an increas-
ingly important role in our daily lives. Search engines aim to
provide beneficial image search results to users in response
to queries. The quality of image search results depends on
many factors: chosen search algorithms, ranking functions,
indexing features, the base image database, etc. Applying
different settings for these factors generates search result
lists with varying levels of quality. Previous research has
shown that no setting can always perform optimally for all
queries. Therefore, given a set of search result lists generated
by different settings, it is crucial to automatically determine
which result list is the best in order to present it to users.
This paper proposes a novel method to automatically iden-
tify the best search result list from a number of candidates.
There are three main innovations in this paper. First, we
propose a preference learning model to quantitatively study
the best image search result identification problem. Second,
we propose a set of valuable preference learning related fea-
tures by exploring the visual characters of returned images.
Third, our method shows promising potential in applications
such as reranking ability assessment and optimal search en-
gine selection. Experiments on two image search datasets
show that our method achieves about 80% prediction ac-
curacy for reranking ability assessment, and selects optimal
search engine for about 70% queries correctly.
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(b) The top-10 images returned on query “White House”.

Figure 1: Image search result comparison between Bing

and Google.

1. INTRODUCTION
Given the explosive growth of the Web and the popularity

of image sharing Web sites, image retrieval plays an increas-
ingly important role in our daily lives. Extensive research
has been conducted to retrieve images relevant to a given
query. Many factors can influence image search results. Ex-
isting work aims to get better search results by focussing
their efforts on various aspects of the search process, such
as designing effective visual features [15, 16], building effi-
cient image indexes [17], developing new ranking algorithms
[6, 22] and designing user-friendly interface [24]. The algo-
rithms used in these aspects generate result lists of varying
quality when used with different settings. Following are two
examples for illustration.

In our first example we compare image search results gen-
erated by two popular search engines, Bing and Google.
We submitted 29 text queries to them, and collected the
images they returned1. Fig. 1(a) gives the AP@40 (av-
erage precision, ref Section 5.1 for details) for each query
of the two search engines and the overall performance MAP
(mean AP over all queries). We find that although Bing and
Google have comparable MAP values (52.24 and 52.36 re-
spectively), their performance on individual queries is quite
different. Google achieves better performance on about half
the queries. For example, on the query “White House”,
the top images returned by Google are more related to the
“White House” than those returned by Bing (Fig. 1(b)). If

1The data was collected in 2008.
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Table 1: MAP@40 (×100) of Bing, Google, and after

optimal search engine selection for each query.

Bing Google SelectOpt

MAP@40 52.24 52.36 60.71

Table 2: MAP@20 (×100) of the text-based search

(Text) and the two reranking methods, PRF and BR.

Text PRF BR

MAP@20 50.28 60.65 63.64

Gain - 20.62% 26.57%

an algorithm could automatically determine which search
engine would generate a better result list for each query,
one could achieve better performance by selecting the opti-
mal search engine for each query. Table 1 shows the MAP
value after this selection, which is 60.71, about 16% relative
improvement over Bing and Google.

In our second example we compare the performance of
text-based image search and visual reranking. Most exist-
ing image search engines are implemented by indexing and
searching textual information associated with images, e.g.,
surrounding text, URLs. The text-based image search ap-
proach is efficient for large scale image databases. How-
ever, it suffers when the associated text is incapable of ade-
quately describing the image. To address this difficulty, vi-
sual reranking has been developed to refine the text search
results by incorporating visual information from images. Re-
cent research has shown that visual reranking can gener-
ally improve the performance of text-based image search to
some extent [19, 22]. However, it is not guaranteed to ben-
efit every query. It is widely observed that visual reranking
can greatly improve retrieval performance for some queries,
while for others reranking can even degrade the performance
of the initial text-based search.

As an illustration, we apply two popular reranking meth-
ods, BR [19] and PRF [21], on a public image search dataset
(Web353). This dataset was collected by Krapac et al. [13].
It contains 71478 images returned by a Web search engine
for 353 general textual queries. Table 2 presents the aver-
age performance of the text-based search engine (Text) and
the performance of the two reranking methods, in terms
of MAP@20 over 353 queries. Table 3 lists the number of
queries with improved, degraded, or equivalent performance
after reranking. We find that, although overall performance
of all 353 queries is improved, there are still around 100
queries (25 - 30 percent) that suffer performance decrease
after reranking. By further investigating the reranking per-
formance on each query, we find that the performance of
many queries has decreased significantly. For some queries,
the decrease in AP value is as great as 0.7. Thus, given a
query, it becomes crucial for the search engine to predict
its visual reranking performance and decide whether the vi-
sual reranking process should be performed or not. Doing so
would allow us to avoid presenting reranking results which
are even worse than text-based search results to users.

The above two examples raise the same problem: for a
query, given a set of result lists, which one is the best (has
the highest retrieval performance)? In other words, which
result list should be presented to users? This paper aims to
solve this problem: given a set of search result lists returned
by multiple search executions of a query, how can we design
an algorithm to automatically compare the quality of those

Table 3: The number of queries with improved, de-

graded, or equivalent performance after reranking.

�queries Improved Unchanged Degraded

PRF vs. Text 237 6 110

BR vs. Text 256 10 87

result lists in order to identify the result list with the high-
est performance. To solve this problem, we build a model to
investigate the quality of search results using machine learn-
ing. It consists of two stages: training and testing. In the
training stage we explore the visual distribution character-
istics of good and bad search result lists and derive a set of
light-weight features to capture their differences. Then, by
forming the search result lists of training queries into prefer-
ence pairs, we derive a preference learning model (PLM) by
training on these pairs with RankSVM [12]. Finally, in the
testing stage, the developed PLM is applied to predict the
preference score for search result lists of any testing query.

To the best of our knowledge this is the first attempt that
automatically evaluates the quality of Web image search re-
sult lists. The proposed approach has a wide range of ap-
plications. For example, it is capable of selecting the best
search engine to solve the problem in example 1 and au-
tomatically determining whether reranking can benefit the
query to solve the problem in example 2. There are also
many other promising potential applications. For example,
given different search algorithm settings (various visual fea-
tures, visual reranking methods, etc.), our approach can au-
tomatically select the optimum settings for each query.

The main contributions introduced in this paper are sum-
marized as follows:

• We quantitatively study and formulate the image search
result preference learning problem. We propose a novel
framework and a set of valuable features to automati-
cally compare the quality of image search result lists.

• Our proposed approach shows promising application
potential for optimal search engine selection, merging
of search result lists, and selecting the best visual fea-
ture and reranking approach for each individual query.

• Our work will explicitly guide the research in visual
reranking ability estimation and provide a path for
query difficulty modeling.

2. RELATED WORK
Image search plays an important role in our daily lives.

Considerable research has been proposed to improve image
search from various aspects, such as image annotation [2]
and visual reranking [19, 21, 22]. All these research efforts
have the same objective of returning good image search re-
sults to users. Different search result lists are generated by
different image search methods and their performance on
each query varies greatly. These works show their strength
on certain aspects. There is no single method which can
always work the best for all queries. Therefore, in addition
to developing (overall) effective search approaches, it is also
very important to select the most suitable search method for
each query. Through this selection, better image search re-
sults can be derived. This paper conducts this best method
selection for each query by investigating the quality of the
image search result lists generated by different search meth-
ods. The search result list with the highest performance is
picked out and presented to users.
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The most related work to this paper is the query difficulty
prediction. Query difficulty prediction in document retrieval
has been explored for many years [3, 7, 8, 9, 11, 14, 23]. It
aims to predict whether a query will have a high retrieval
performance in a document collection. It includes two cate-
gories, pre-retrieval prediction and post-retrieval prediction.
In pre-retrieval, query difficulty prediction attempts to eval-
uate search performance before the retrieval step [8, 9, 14].
It mainly relies on statistics of query terms over document
collections. He and Ounis [8] proposed several pre-retrieval
predictors by considering the intrinsic statistical features of
queries, including query length, standard deviation of the in-
verse document frequency (idf) of terms in the query, query
scope, and a simplified clarity score (SCS). Kwok et al. [14]
employed support vector regression to train a query difficulty
prediction model with simple features such as log document
frequency and query term frequency. Imran and Sharan [9]
proposed two pre-retrieval query difficulty predictors based
on the co-occurrence information among query terms. They
assumed that higher co-occurrence of query terms means
more information is conveyed, which leads to an easier query
or a lower query difficulty level.

In post-retrieval prediction, the retrieval step is conducted
first and query difficulty prediction evaluates the perfor-
mance of the returned results. Our work is most related to it.
In [3], a clarity score was proposed that measures the ambi-
guity of a query through the Kullback-Leibler divergence be-
tween the language models created from top-retrieved doc-
uments and all documents in the collection. Hauff et al. [7]
proposed an improved clarity score to solve the parameter
sensitivity problem of the previous one. Elad Yom-Tov et al.
[23] estimated the quality of search result lists by measur-
ing the agreement between the top results returned by the
full query and its sub-queries. Jensen et al. [11] predicted
query difficulty by using features extracted from surrogate
documents represented in the search result list to train a re-
gression model. In image retrieval, little research has been
conducted on query difficulty estimation. Xing et al. [20]
used textual features to predict whether a query is difficult
to be represented by images or not. This work does not in-
vestigate the image search performance, but only classifies
the queries into two categories “easy” or “hard”.

Query difficulty prediction estimates the performance of
a search result list for a given query. Unlike query difficulty
prediction, our work targets comparing several search result
lists generated for a particular query. Instead of predict-
ing their exact performance, we only need to know which
search result list is better than the others. Furthermore, in
query difficulty prediction, the search result lists are inde-
pendent of each other since they are generated for different
queries. In our problem, the compared search result lists are
generated for the same query and are thus correlated. We
can utilize the correlation between them. Additionally, both
the query and documents in the query difficulty prediction
problem are in the textual domain. In our problem queries
are textual and images are visual, creating a more complex
problem. Our image search result performance comparison
problem faces many challenges. As a first attempt, this pa-
per only focuses on exploiting visual information, which is
the essential description of images. In the case where textual
information of images (URL, surrounding texts et al.) is also
available, we will further exploit the joint usage of textual
and visual information for this problem in the future.

3. PROBLEM FORMULATION
For query q and an image collection {x1, · · · ,xN}, multi-

ple search result lists can be derived using different search
algorithms. Each search result list is a permutation/ranking
of the N images sorted in descending order by their ranking
scores, which are generated by the search algorithm . We use
ranking list variable l to denote a search result list. Assum-
ing there are nq ranking lists generated for query q, they
constitute a set of search result lists L(q) = {l1, · · · , lnq}.
Our objective is to automatically determine which l in L(q)

has the highest performance,

l∗ = argmaxl∈L(q) y(l), (1)

where y(l) denotes the performance of l. y(l) can be mea-
sured by commonly used information retrieval measures,
such as precision, recall, Average Precision (AP) [1] and
Normalized Discounted Cumulated Gain (NDCG) [10].

For two ranking lists, the one with more relevant images
ranked at the top gives a better performance than the one
with fewer relevant images ranked at the top. If we have
the ground truth label of each image (its relevance to query
q), then y(l) can be derived by using AP or NDCG and
the best search result selection in problem (1) is straight
forward. However, in real applications, the ground truth
relevance labels for images are unavailable. In this situa-
tion, how can we know which ranking list performs better?
In this paper, we propose to solve this problem via machine
learning. Specifically, we want to learn a preference model
f(l) = wTψ(l) from a training set, where w is the weight-
ing coefficient vector and ψ(l) is a vector which reflects the
characteristics of l. This model should satisfy the following
constraints on the training set

∀(li, lj), if y(li) > y(lj), then f(li) > f(lj). (2)

For two ranking lists li and lj in training set, if the ground
truth performance y(li) is better than y(lj) (li is preferred
to lj), f(li) should be larger than f(lj). In other words,
the ordinal relationship of pair (f(li), f(lj)) must be consis-
tent with that of (y(li), y(lj)) , to reflect the ground truth
preference of two ranking lists.

In this paper we formulate the learning problem of f(·)
by using the powerful RankSVM [12] algorithm. It mini-
mizes the prediction errors on a set of training queries Q =
{q(1), · · · , q(m)},

min
1

2
wTw + C

∑
ξijk (3)

s.t. ∀k, k = 1, · · · ,m. ∀(li, lj) ∈ S(q(k)),

wTψ(li) ≥ wTψ(lj) + 1− ξijk, ξijk ≥ 0

where ξ is the slack variable and C > 0 controls the trade-
off between model complexity and training errors. S(q) is
the set of preference ranking list pairs for query q generated
from the ranking list set L(q) = {l1, · · · , lnq}

S(q) = {(li, lj)|y(li) > y(lj); i, j = 1, · · · , nq}. (4)

The preference learning model f(·) can be derived by solv-
ing problem (3). Then, this model can be applied to any
testing query q′ for which ground truth relevance labels are
unavailable. Suppose there are nq′ ranking lists generated

for this query, L(q′) = {l1, · · · , lnq′ }. f(·) can predict a
value for each list. For any two ranking lists li and lj , if
f(li) > f(lj) , we know that li performs better than lj , and
vice versa. The ranking list with the highest prediction value
is the one which has the best performance.
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Figure 2: Sorted Ratiodense values in 353 queries.

4. FEATURE CONSTRUCTION
A crucial factor in f(l) = wTψ(l) is the vector ψ(l). It

is not trivial to design a feature vector to capture visual
characteristics of an arbitrary ranking list l. By analyzing
the visual distribution of images in the collection, we propose
a set of lightweight features.

4.1 Two Basic Assumptions
Given two ranking lists returned for query q over image

collection {x1, · · · ,xN}, the key is to investigate the visual
difference between relevant and irrelevant images. The rel-
ative feature vector ψ(l) discussed in this paper is designed
based on the following two basic assumptions:

• Density Assumption: Relevant images have higher den-
sity than irrelevant images;

• Visual Similarity Assumption: Relevant-relevant im-
age pairs share higher visual similarity than relevant-
irrelevant and irrelevant-irrelevant image pairs.

4.1.1 Density Assumption
Our density assumption is that relevant images have higher

density than irrelevant images. To verify whether this as-
sumption is true or not, we calculate the density of each
of the N images in query q and then analyze their statistic
characteristics. The density pxi for image xi is calculated
via Kernel Density Estimation (KDE)[18],

pxi =
1

|N (xi)|
∑

xj∈N (xi)
k(xi − xj), (5)

where N (xi) is the set of neighbors of image xi among
the N images and k(x) is a kernel function that satisfies
both k(x) > 0 and

∫
k(x)d(x) = 1. The Gaussian kernel is

adopted in this paper and σ is empirically set as the average
of pair-wise distances of all images.

Without ambiguity, we use xi to denote both the image
and its visual feature vector in this paper. Various visual
features can be used in (5). In this paper we adopt the pop-
ular visual bag-of-word image representation. More details
will be introduced in Section 5.1.

To show the density difference between relevant and irrel-
evant images, we calculate the average density of all relevant
images AvgDense+ and the average density of all irrelevant
images AvgDense− in each query. They are calculated as,

AvgDense+ =
1

|X+|
∑

xi∈X+
pxi , (6)

AvgDense− =
1

|X−|
∑

xi∈X− pxi , (7)

where X+ is the set of all relevant images and X− is the set
of all irrelevant images. Ratiodense is defined as, Ratiodense =
AvgDense+/AvgDense−.

We compute Ratiodense for all 353 queries in Web353 and
plot them in Fig. 2 by sorting them in descending order.
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Figure 3: Sorted Ratiosim1 (a) and Ratiosim2 (b) on 353

queries.

From Fig. 2, we see that, among 353 queries, there are 329
queries whose average density of relevant images is larger
than the average density of irrelevant images (Ratiodense >
1). To verify whether AvgDense+ is significantly larger than
AvgDense−, we further perform a statistical significance
test. We used the T-test with a 5% level of significance. The
T-test result shows that in 286 queries the average density of
relevant images is significantly larger than the average den-
sity of irrelevant images. This phenomenon demonstrates
that the density assumption holds for most queries.

4.1.2 Visual Similarity Assumption
Our visual similarity assumption is that relevant-relevant

image pairs share higher visual similarity than relevant-irrelevant
and irrelevant-irrelevant image pairs. For query q, we cal-
culate the visual similarity sim(xi,xj) for any image pair
(xi,xj). There are various ways to calculate sim(xi,xj).
We use the popular bag-of-visual words representation with
intersection kernel [5].

To verify the visual similarity assumption we calculate the
average similarity of relevant-relevant, relevant-irrelevant,
and irrelevant-irrelevant image pairs for each query in the
Web353 dataset. They are denoted asAvgSim++, AvgSim+−,
andAvgSim−− respectively. We plot the sortedRatiosim1 =
AvgSim++
AvgSim+− and Ratiosim2 =

AvgSim++
AvgSim−− in Fig. 3. It shows

that, among 353 queries, there are more than 340 queries
whose average similarity of relevant-relevant pairs is larger
than the average similarity of relevant-irrelevant and irrelevant-
irrelevant pairs. The statistical significance test (T-test with
a 5% level of significance) reveals that AvgSim++ is signifi-
cantly larger thanAvgSim+− in 347 queries, andAvgSim++

is significantly larger than AvgSim−− in 339 queries. This
proves the validity of our visual similarity assumption.

Due to the well-known semantic gap problem, some queries
(especially the queries with large intra-class appearance vari-
ance) are hard to be well represented by descriptive visual
features. That is the reason why our two assumptions fail for
some queries, as shown in Figs. 2 and 3. By further investi-
gating the two assumptions on each query, we find that the
assumptions are valid for the queries with small appearance
variance, such as “pantheon rome”, “flag Italy”, “mona lisa”,
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Figure 4: Illustration of density and similarity distribu-

tion difference between two ranking lists.

“log NBA”, etc. They are likely to fail for the queries with
large appearance variance, such as “flower”, “dog”, etc. Al-
though the assumptions fail for some queries, they are valid
for a majority of queries ( Figs. 2 and 3). Therefore, it is
reasonable to apply them in our method. Our experimental
results reported in Section 5 also validate this.

4.2 Preference Learning Feature Extraction
Inspired by the above two assumptions, we propose a set

of related features by mining the distribution of density and
visual similarity in l. We demonstrate it by using a toy
example for illustration, as shown in Fig. 4. Suppose there
are 6 images returned for query q, 3 relevant (denoted by
square) and 3 irrelevant (denoted by circle). Given the two
ranking lists l1 and l2, obviously the performance of l1 is
better than l2, i.e. y(l1) > y(l2). According to the two
assumptions, for the better ranking list l1, its top ranked
images should have high (H) density and share high visual
similarity while bottom ranked images should have low (L)
density and low visual similarity. This density and similarity
distribution difference between the two ranking lists can be
utilized for extracting preference learning related features.

4.2.1 Similarity Distribution Feature
For query q, given a ranking result l, a visual similarity

matrix M ∈ R
N×N can be obtained by calculating pair-

wise image similarity. The (i, j) element mij in M denotes
the visual similarity between the i-th ranked image and j-th
ranked image. We split the N images into k groups along
their ranks equally. As a consequence, the N × N simi-
larity matrix M is split into k × k grids, as shown in Fig.
5. Then, we analyze the sub similarity matrix in diagonal
blocks. Specifically, we calculate the mean and variance of
similarities in each block to derive the similarity distribution
feature vector FSD:

FSD(i) = [mean(M(i,i)), var(M(i,i))], i = 1, · · · , k. (8)

where M(i,i) is the sub similarity matrix in block Bii. Then,
a 2k-dimensional similarity distribution feature vector FSD

is derived. The intuition behind this feature is that, for a
good ranking result list, more relevant images have higher
ranks. In other words, images belonging to the top part may
share higher similarity than those in other parts.

4.2.2 Density Distribution Feature
Similar to the visual similarity distribution feature, we

also propose a density distribution feature based on the den-
sity assumption. For the N images {x1, · · · ,xN}, we can
derive a density vector p = [p1, · · · , pN ]T, where pi is the

...

rank

…

part

B11

B22

...

Bkk

1 2 k…

1

2

k

1
2
3

N-1
N

…

1

2

k

…

Ranking list l

…

Similarity Matrix M

Figure 5: The N images are split into k parts along their

ranks equally. Therefore, the N ×N similarity matrix M

is split into k × k blocks.

density of the i-th ranked image in l as defined in (5). We
also split the N images into k groups and calculate the mean
and variance of the density of the images in each part,

FDD(i) = [mean(p(i)), var(p(i))], i = 1, · · · , k. (9)

where p(i) is the sub density vector for images in part i.
By concatenating FDD(i), i = 1, · · · , k, we can get a 2k-
dimensional density distribution feature vector FDD.

4.2.3 Feature from Top-T Ranked Images
Both FSD and FDD roughly capture the overall density

and visual similarity distribution of all N images in l (mean
and variance). The following features are designed to exploit
them in fine granularity as a complementation. Especially in
the case when users only focus on the performance of images
ranked in the first several pages. Therefore, we propose
a histogram of density and visual similarity to elaborately
analyze the top-T ranked images in l.

Specifically, the density value is in range [0, 1] and we
equally divide it into C-bins. Then, the densities of top-T
ranked images {p1, p2, · · · , pT } can be quantified into a
C-bin histogram by mapping them into the corresponding
bins. We denote this density histogram feature as FHD,

FHD(c) =
1

T
|{i|i = 1, · · · , T, pi ∈ c-th bin}|, (10)

where c = 1, · · · , C.
Similarly, we can get a C-bin visual similarity histogram

FHS by mapping the T × T similarity matrix of the top-T
ranked images into C-bins,

FHS(c) =
1

T 2
|{(i, j)|i, j = 1, · · · , T,mij ∈ c-th bin}|, (11)

where c = 1, · · · , C.
Given FSD, FDD, FHD, and FHS , the final preference

learning feature vector ψ(l) can be derived by concatenating
these four individual features.

4.3 Training Sample Enlargement
We have shown how to extract the preference learning

feature vector ψ(l) for a ranking list l. We then build the
preference learning model by training RankSVM on a set
of queries {q(1), · · · , q(m)}, as presented in problem (3). In
the training set, for each query, there are usually only a few
ranking lists in L(q), which may cause the small (insufficient)
sample problem. For example, in our example 1 in Section
1, there are only two ranking lists (one from Bing and the
other from Google). To solve this problem, we can construct
additional ranking lists to enlarge the training set.
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We can manually create ranking list lmanual for each query
by permutating the N images in query q according to certain
rules. Then, lmanual is added into the ranking list set L(q):

L(q) ← L(q) ∪ {lmanual} (12)
In this paper, we create three manual ranking lists for each
query, including:

1) Perfect ranking list: order all relevant images at the
top and all irrelevant images at the bottom;

2) Worst ranking list: order all irrelevant images at the
top and all relevant images at the bottom;

3) Random ranking list: permutate the images randomly.
Our experiments show that this training set enlargement

works well for solving the small training sample problem.

5. EXPERIMENTS

5.1 Reranking Ability Assessment
In this section, we investigate the effectiveness of the pro-

posed preference learning model (PLM) by applying it to
reranking ability assessment. In reranking, each query q has
two ranking lists: lText generated by text-based search en-
gine and lrerank generated by the reranking process. The
reranking ability t∗q is defined as the performance improve-
ment of reranking over text-based search, t∗q = y(lrerank)−
y(lText). The reranking ability measures to what degree
reranking can improve text-based search results. For a query,
if its reranking ability is positive (suitable to be reranked),
the reranking result list will be presented to users; other-
wise the text-based search result list will be presented. In
other words, the search engine can achieve guaranteed per-
formance enhancement by only reranking queries which are
suitable for reranking while leaving the remaining unsuit-
able ones unchanged. With this motivation, we apply PLM
to assess reranking ability. Specifically, with the model f(·),
PLM can predict a value for lText and lrerank respectively.
The prediction difference f(lrerank)−f(lText) is used to ap-
proximate the ground truth reranking ability t∗q .

Dataset: In order to demonstrate the capacity of PLM
for reranking ability assessment, we conduct experiments on
a large public web image search dataset “Web353”, collected
by Krapac et al. [13]. This dataset consists of 71478 im-
ages returned by the French search engine Exalead 2 for
353 search queries, which were sampled from the most fre-
quent terms searched by Exalead users. These 353 queries
are very diverse and cover a broad range of topics, including
landmark, design (painting, map, logo, flag), people (movie,
sports, singer star), object (vehicle, instrument, building,
sports tool), and others (animal, plant, product, place, event,
abstract word). Queries are somewhat evenly distributed
across these topics. For each query, there are about 200 im-
ages returned by Exalead. The ground-truth relevance label
for each image is given a binary value: “relevant” or “irrel-
evant”. In this dataset, there are 43.86% images labeled as
relevant. For each query, we conduct BR (Bayesian Rerank-
ing) [19] to generate its reranking result lrerank.

Ranking List Performance y(l): For query q, given a
ranking result list l, its ground truth performance y(l) is
measured via non-interpolated average precision (AP) [1],
which is widely used in information retrieval. AP is the
mean of the precision values obtained when each relevant
image occurs. The AP of top-T ranked images is defined as

2http://www.exalead.com/search/image

AP@T =
1

ZT

∑T

i=1
[precison(i)× rel(i)] (13)

where precison(i) is the precision of top-i ranked images
and rel(i) is a binary function denoting the relevance of the
ranked image with “1” for relevant and “0” for irrelevant.
ZT is a normalization constant which is chosen to guarantee
AP@T = 1 for a perfect ranking result list.

Model training: We use the leave-one-out method for
PLM training. At each step we train the model on 352
queries and test this model on the leftover query. We repeat
the process 353 times to ensure that each query has been
used as test query at least once.

Image visual representation: The density and visual
similarity features described in Section 4 are calculated based
on visual representation of images. In this paper we use a
bag-of-visual word histogram to visually represent an image.
Scale-invariant feature transform (SIFT) [16] local descrip-
tors are extracted from each image on a dense grid. Then,
a codebook is generated by clustering all local descriptors
into 1000 groups [5]. By quantizing local descriptors into vi-
sual words, each image is represented as a 1000-dimensional
histogram. Spatial pyramid matching [15] is used to encode
spatial information. Calculating the similarity between two
histograms is done using an intersection kernel.

Evaluation: For each query q, there are two ranking lists:
lText and lrerank. The query’s ground truth reranking abil-
ity is t∗q = y(lrerank) − y(lText), and the reranking ability
estimated by the learned PLM is tq = f(lrerank)− f(lText).
We evaluate PLM from the following two aspects.

1. Prediction Accuracy (AC):

AC =
�Correctly predicted queries

�Total queries
(14)

Correctly predicted queries are those which satisfy t∗qtq > 0.
AC examines whether PLM can correctly predict the binary
relationship (improved or not) between the result lists of
reranking and text-based search. In addition to this overall
accuracy, we also examine the prediction accuracy P+, P−
of positive and negative queries. A positive (negative) query
is one in which reranking performs better (worse) than the
text-based search, i.e., t∗q > 0 (t∗q < 0). P+ and P− are
defined as:

P+ =
�Correctly predicted positive queries(t∗q > 0andtq > 0)

�Total positive queries

P− =
�Correctly predicted negative queries(t∗q < 0andtq < 0)

�Total negative queries

We examine P+ and P− because we want to investigate the
model’s capacity for negative query detection as well as the
percentage of sacrificed positive queries.

2. Correlation Coefficient : Accuracy only measures the
binary prediction of reranking ability, i.e., improved or not
after reranking. To further verify the effectiveness of PLM
in terms of reranking ability degree prediction, we check the
consistency between the ground truth reranking ability vec-
tor t∗ = [t∗

q(1) , · · · , t∗q(353) ]
T and the one predicted by PLM

t = [tq(1) , · · · , tq(353) ]T. As widely used in query difficulty
prediction [11, 23], we calculate the Kendall’s τ rank corre-
lation coefficient between t∗ and t. Kendall’s τ is defined
as τ = nc−nd

nc+nd
, where nc and nd are the numbers of con-

cordant and discordant pairs respectively. A pair of two
queries (q(i), q(j)) is concordant if the orders of (t∗

q(i) , t
∗
q(j))

and (tq(i) , tq(j)) agree. Kendall’s τ value falls within the
range [-1, 1], where -1 means perfect negative correlation, 1
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Table 4: Correlation coefficients and accuracy in rerank-

ing ability assessment.

Kendall’s τ AC(%) P+(%) P-(%)

T=20
QD 0.0543 57.51 67.97 33.33

PLM 0.3654 75.64 92.19 35.63

T=40
QD 0.1485 65.44 77.44 30.49

PLM 0.4414 78.75 91.35 42.68

T=60
QD 0.0826 65.44 77.09 26.03

PLM 0.4782 82.44 92.73 49.32

T=80
QD 0.1244 68.84 81.09 27.40

PLM 0.4820 80.45 89.82 50.68

T=100
QD 0.1400 70.82 82.44 28.99

PLM 0.4659 80.74 89.25 52.17

Table 5: MAP (×100) comparison in reranking ability

assessment. MAP is the mean of AP over all queries.

Text BR SelectQD SelectPLM SelectOpt

MAP@20 50.28 63.64 59.65 64.32 66.80

MAP@40 45.24 57.37 55.29 57.97 59.40

MAP@60 43.06 54.35 51.89 55.02 55.96

MAP@80 42.60 52.90 51.24 53.45 54.32

MAP@100 43.08 52.99 51.65 53.38 54.24

means perfect positive correlation, and 0 means t∗ and t are
independent to each other.

Reranking Ability Assessment: We evaluate PLM at
5 truncation levels, i.e., y(l) = AP@T, T = {20, 40, 60, 80, 100}.
We implement the document query difficulty method pro-
posed in [11] as a baseline, since this method conducts query
difficulty prediction through supervised model training. Based
on [11], we extract textual features for each image from its
associated textual information (URL, surrounding text, etc.)
and train a regression model. The reranking ability is de-
noted as the query difficulty difference between the two rank-
ing lists (lText and lrerank). We note the method in [11] as
QD. Table 4 shows the Kendall’s τ correlation coefficients
and accuracy of our approach and the baseline QD. It reveals
that our method outperforms QD in both correlation coef-
ficients and accuracy. By further investigating P+ and P-,
we conclude that PLM removes about half of the negative
queries while keeping most positive queries. For example,
in T=80, PLM detects 50.68% of the negative queries, pre-
venting performance decrease, while sacrificing performance
gain on only 10.18% of the positive queries.

With the predicted reranking ability, we can choose to exe-
cute reranking only on those queries whose reranking ability
is positive. This operation can prevent large performance
decreases on some queries, possibly improving the user ex-
perience. The reranking process selection for each query
can also lead to a better overall performance (mean AP
over all queries, MAP). We select a better one from lText

and lRerank for each query via QD (SelectQD) and PLM
(SelectPLM.) Table 5 lists the MAP values for text-based
search (Text), reranking (BR), SelectQD, and SelectPLM.
Column SelectOpt shows the maximal MAP by selecting the
best search result list between Text and BR for each query
according to their ground truth performance, which gives
the upper bound of the MAP value we can achieve. Table 5
shows that SelectPLM performs better than both Text and

Table 6: MAP (×100) comparison in reranking ability

assessment for the queries which do not satisfy the as-

sumptions.

Text BR SelectPLM SelectOpt

MAP@20 41.00 41.29 40.78 47.51

MAP@40 36.57 36.91 37.20 41.09

MAP@60 34.58 35.38 35.46 38.37

MAP@80 35.32 36.15 36.16 38.92

MAP@100 36.38 37.90 37.50 40.19

Table 7: MAP (×100) comparison in reranking ability

assessment for each of the 5 query categories (T=60).

Text BR SelectPLM SelectOpt

landmark 50.92 62.44 63.75 64.88

design 41.94 57.83 58.59 59.00

people 47.08 61.61 61.59 62.08

object 33.66 35.33 36.64 39.00

others 40.38 50.70 51.31 52.10

BR, while SelectQD only achieves a moderate performance
between Text and BR. The reason why the QD method in
[11] does not work well here is that textual features in im-
age retrieval are not the essential descriptions for the images,
therefore more noise (e.g., mismatching between surround-
ing text and image content) may be introduced.

As we discussed in Section 4.1, the assumptions are not
always valid for all queries. For those queries which do not
satisfy the assumptions, the extracted preference learning
features may be noisy. Consequently the preference predic-
tion may be unreliable. To investigate the implication of
the failures of the assumptions on the prediction results, we
examined the performance of the proposed PLM on the 67
queries which do not satisfy either the density assumption or
the visual similarity assumption. The experimental results
show that our approach still achieves (50±4.9)% prediction
accuracy (AC over T = 20, 40, 60, 80, 100) in reranking abil-
ity assessment, which is close to random prediction. And
the SelectPLM is comparable to Text and BR, as shown in
Table 6. It reveals that our method does not worsen the
search engine’s performance even on the queries which do
not satisfy the assumptions.

To further investigate the effectiveness of PLM for differ-
ent categories of queries, the 353 queries are grouped into
5 categories: landmark (53), design (60), people (98), ob-
ject (54) and others (88). We conducted experiments on
each of the 5 categories. The experimental results show that
our method works well on all query categories. The predic-
tion accuracy (ACs) are 86.79%, 95.00%, 87.76%, 61.11%,
78.41% respectively. Even in the category “object”, of which
queries usually have images with a large visual appearance
variance, moderate AC (61.11%) is obtained and the MAP
value of SelectPLM is better than both Text and BR, as
shown in Table 7. Better performance is achieved in “land-
mark” and “design” since the images of those categories are
more visually consistent. For “people”, high AC is obtained,
but the SelectPLM is very close to BR. The reason is that
BR already improves most of queries in this category a lot,
hence the improvement space of PLM over BR is limited.

Reranking Feature Selection: PLM can also be ap-
plied to select optimal reranking features. The reranking
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Table 8: MAP (×100) comparison in reranking feature selection from {Text, BRSIFT and BRCF}
Text BRSIFT BRCF SelectRandom SelectPLM SelectOpt

MAP@20 50.28 63.64 60.21 58.04 64.74 69.13

MAP@40 45.24 57.37 53.99 52.20 58.44 61.35

MAP@60 43.06 54.35 50.65 49.35 55.17 57.34

MAP@80 42.60 52.90 49.20 48.23 53.85 55.58

MAP@100 43.08 52.99 49.08 48.38 53.67 55.36

Table 9: MAP (×100) comparison in reranking algorithm selection from {Text, BRSIFT and PRFSIFT}.
Text BRSIFT PRFSIFT SelectRandom SelectPLM SelectOpt

MAP@20 50.28 63.64 60.65 58.19 63.76 69.44

MAP@40 45.24 57.37 54.75 52.45 57.79 60.99

MAP@60 43.06 54.35 51.97 49.79 55.07 57.26

MAP@80 42.60 52.90 50.68 48.73 53.39 55.56

MAP@100 43.08 52.99 50.57 48.88 53.62 55.43
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Figure 6: Reranking feature selection. Percentages of

queries for which PLM selects the Best/Middle/Worst

ranking list.
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Figure 7: Reranking algorithm selection. Percentages of

queries for which PLM selects the Best/Middle/Worst

ranking list.

feature is the visual feature used in the reranking process
which has a great influence on reranking performance. We
use two different visual features for BR reranking and ob-
tain their corresponding ranking lists. One feature is the
aforementioned SIFT based bag-of-visual word histogram,
denoted as SIFT. The other one is a combination of several
low-level features adopted in [4], denoted as CF.

With two ranking lists generated by BRSIFT and BRCF,
as well as the text-based search result list (Text), we ap-
ply PLM to select the best result list for each individual
query. Table 8 gives the MAP comparison between their in-
dividual performances, as well as the performance after se-
lection. We compare PLM with random selection. Without
prior knowledge, random selection just selects from the three
ranking lists randomly. It shows that our model SelectPLM

not only outperforms random selection SelectRandom, but
also outperforms all three individual ranking methods. In
Fig. 6, we further give the % of the Best/Middle/Worst
selection queries, which shows the percent of all queries for
which our method chose each one of the three ranking lists.
Fig. 6 clearly demonstrates that, for most queries (60%-
70%), PLM selects the Best ranking list from {Text, BRSIFT,
BRCF}. This is a substantial improvement over the random
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Figure 8: Reranking feature and algorithm mixture selec-

tion. Percentages of queries for which PLM selects the

Best/2nd/3rd/4th/Worst ranking list.

selection method, which chooses the Best ranking list for
33.33% of queries, and verifies the effectiveness of our model.

Reranking Method Selection: Similar with reranking
feature selection, PLM can also be applied to select the opti-
mal reranking method for each query. This selection is con-
ducted on reranking results generated by BR [19] and PRF
[21]. The SIFT feature is used in both reranking methods.
Table 9 and Fig. 7 give the MAP value comparison and %
of the Best/Middel/Worst selection queries, respectively. It
also demonstrates the effectiveness of our method in select-
ing better ranking method for each query.

Reranking Feature and Algorithm Mixture Selec-
tion: With two reranking features (SIFT and CF) and two
reranking algorithms (BR and PRF), four reranking result
lists are generated by their combination, i.e., BRSIFT, PRFSIFT,
BRCF and PRFCF. We further test PLM on this mixture
selection. For each query, four reranking lists as well as the
Text result list are ranked according to the value predicted
by PLM. Table 10 gives the MAP value comparison We note
an increase in performance after PLM selection, producing
better results than all five basic methods and random se-
lection. We also analyzed the number of queries for which
PLM selects the i-th best ranking list (i = 1, · · · , 5; i = 1
means the best and i = 5 means the worst), as shown in Fig.
8. It shows that PLM selects the Best/second best ranking
list for about 40%/20% of the queries. It obviously outper-
forms random selection, which would select each of the five
ranking lists for about 20% of the queries.

5.2 Search Engine Selection
In this section we investigate the effectiveness of the pro-

posed method by applying it to optimal image search engine
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Table 10: MAP (×100) comparison in reranking feature and algorithm mixture selection from {Text, BRSIFT, BRCF,

PRFSIFT and PRFCF}.
Text BRSIFT BRCF PRFSIFT PRFCF SelectRandom SelectPLM SelectOpt

MAP@20 50.28 63.64 60.21 60.65 54.00 57.76 64.86 72.26

MAP@40 45.24 57.37 53.99 54.75 49.67 52.20 58.57 63.68

MAP@60 43.06 54.35 50.65 51.97 47.52 49.51 55.45 59.45

MAP@80 42.60 52.90 49.20 50.68 50.68 49.21 53.83 57.57

MAP@100 43.08 52.99 49.08 50.57 47.58 48.66 54.00 57.29

selection and search result merging. Specifically, each query
q has two ranking lists generated by two search engines: Bing
and Google. Our objective is to determine which search en-
gine returns better performance for any query q.

Dataset: A dataset was collected from two popular im-
age search engines, Bing (Live) and Google. We selected
29 queries 3 from the top-1000 queries of Live Image Search
and popular tags on Flickr. The 29 queries satisfy all the
following three criteria: 1) Popularity : they are either top
queries of Live Image Search or popular tags of Flickr; 2)
Broad topic coverage: the 29 queries cover wide topics, e.g.,
animals, plants, scene, objects, etc.; 3) Including both sim-
ple and compound queries: the 29 queries contain both sim-
ple queries which normally consist of one term (e.g., “Cat”,
“Flower”, etc.) and compound queries which are refined
terms based on some certain attribute, e.g., color (“White
Cat”), time (“White House Night”), emotion (“Funny Dog”),
etc. We submitted each query to Bing and Google respec-
tively, and collected the top 1000 images returned, resulting
in 50566 total images. For each query, the returned im-
ages are labeled as either “relevant” or “irrelevant”. In this
dataset, there are 42.23% images labeled as relevant.

To the best of our knowledge, there is no publicly available
dataset which collects the search results of the same queries
from several search engines and the queries are sampled from
real query logs. To collect such a large query set is difficult
since it may need the collaboration between academia and
industry and it will involve a large amount of efforts in get-
ting query logs from popular search engines , collecting the
huge amount of data and employing human for labeling. As
the first try, we collected a moderate-size dataset with 50K
images [22] with the collaboration with Bing search. In the
future, with the continuing collaboration with industry, we
plan to collect a larger dataset from several search engines.

Experimental setting is the same as that in Section 5.1.
We used the bag-of-visual words histogram for image repre-
sentation and the leave-one-out method for model training.

Evaluation: For each query q, there are two ranking lists:
lBing and lGoogle. Each query’s ground truth performance
difference is denoted as δ∗q = y(lBing) − y(lGoogle), and the
performance difference estimated by PLM is δq = f(lBing)−
f(lGoogle). We also evaluate PLM’s preference prediction
ability from the following two aspects:

1. Prediction Accuracy defined in (14). In this applica-
tion, the correctly predicted queries are those which satisfy
δ∗q δq > 0, i.e., the preference relationship between the two
ranking lists is correctly predicted.

3Animal, Beach, Beijing Olympic 2008, Building, Car, Cat,
Clouds, Earth, Flower, Fox, Funny Dog, George W. Bush, Grape,
Hearts, Hello Kitty, Hiking, Mercedes Logo, Panda, Sky, Statue
of Liberty, Sun, Trees, Wedding, White Cat, White House Night,
White House, Winter, Yellow Rose, Zebra.

Table 11: Correlation coefficients and Accuracy in

search engine selection from {Bing, Google}
T=20 T=40 T=60 T=80 T=100

Kendall’s τ 0.1724 0.1970 0.1232 0.1626 0.2315

AC(%) 62.07 68.97 65.52 79.31 75.86

2. Correlation coefficient: Kendall’s τ correlation coeffi-
cients between the ground truth performance difference vec-
tor Δ∗ = [δ∗

q(1) , · · · , δ∗q(29) ]
T and the one predicted by our

PLM Δ = [δq(1) , · · · , δq(29) ]T.
Search Engine Selection: We also evaluate 5 differ-

ent T s as in Section 5.1. Table 11 shows the correlation
coefficients and accuracy. It shows that moderate corre-
lation coefficients are achieved and the AC is more than
70% when T=80 and 100. It demonstrates that PLM can
choose the better search engine between Bing and Google for
the majority of queries. Therefore, better performance will
be achieved after this suitable search engine selection. The
MAP values of Bing (TextBing), Google (TextGoogle) and the
one generated after our PLM Selection (SelectPLM) are given
in Table 12. Column SelectOpt is the maximal MAP value
arrived at by selecting the optimal search engine accord-
ing to their ground truth. Table 12 shows that SelectPLM

achieves consistent performance improvements over both TextBing

and TextGoogle for all T s. From Tables 11 and 12, we con-
clude that the proposed PLM method can be successfully
applied to optimal search engine selection.

Search Results Merging: In search engine selection,
for each query, we choose a better one between lBing and
lGoogle. In addition to this binary selection, we can also
merge the two result lists to get a new one. For query q,
when we have no idea of the performance of the two search
results, they may contribute equally to the final merged re-
sult list. If we have the prior knowledge of which one is
better than the other, then higher merging weight can be
assigned to this better one. Our PLM can serve this role by
using the predicted δq to set appropriate merging weights.
To complete this goal, the Δ is first normalized into [-1,

1]. We denote the normalized performance difference as δ̃q.
Then, for query q, the merging weights for lBing and lGoogle

are defined as wBing = 1
2
(1 + δ̃q) and wGoogle = 1

2
(1 − δ̃q)

respectively (wBing ≥ 0, wGoogle ≥ 0, wBing +wGoogle = 1).
To form the merged result list, we assign a merging score to
each image in lBing and lGoogle. The merging score for the
i-th ranked images in lBing is i× (1−wBing). The merging
score for the i-th ranked image in lGoogle is i× (1−wGoogle).
The final merged ranking list is derived by sorting all im-
ages in lBing and lGoogle in ascending order of their merging
scores. The performance of this weighted merging result
is given in Table 12, comparing with the equal merging in
which wBing = wGoogle = 0.5. The search engine selection
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Table 12: MAP (×100) comparison in search engine selection and search results merging from {Bing, Google}
TextBing TextGoogle SelectRandom SelectPLM SelectOpt MergeEqual MergeWeight

MAP@20 57.91 64.26 61.09 65.80 71.51 65.36 67.21

MAP@40 52.24 52.36 52.30 56.12 60.71 59.57 59.80

MAP@60 49.18 44.35 46.77 50.78 54.63 54.78 55.85

MAP@80 46.52 39.41 42.97 47.77 50.64 51.31 52.76

MAP@100 44.52 36.20 40.36 45.16 48.18 48.61 49.83

discussed above is actually a hard merge of the two search
results with weight either 1 or 0. Table 12 clearly demon-
strates that merging by leveraging our preference prediction
outperforms equal merging.

6. CONCLUSION AND FUTURE WORK
In this paper, we proposed a method to automatically

compare a set of ranking result lists for a given query by
mining their visual information. The method is formulated
within the RankSVM framework and a set of lightweight
features are designed to reflect the visual difference between
two ranking lists. The proposed method is successfully ap-
plied to reranking ability estimation and automatic search
engine selection. Experimental results have demonstrated
the effectiveness of our approach and its promising applica-
tions on reranking feature and model selection, as well as
merging of image search results.

Currently, our preference learning model is built based on
visual features of images only, and their textual information
is not considered. In the future, we plan to further exploit
this ranking list performance comparison problem by inves-
tigating both visual and textual features, to achieve better
performance. Another direction of our future work is to ap-
ply this model to more potential applications, e.g., query
suggestion, query language selection and so on.
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